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Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu
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Gaz składa się z bardzo wielkiej liczby będących w 
ciągłym ruchu cząsteczek. Odbicia cząsteczek od ścianek 
zbiornika są źródłem ciśnienia wywieranego przez gaz na 
te ścianki. 

xmv2++++Zmiana pędu ścianki:                a siła działająca na ściankę od pojedynczej 

cząsteczki wyniesie:
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Po wysumowaniu po
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Wprowadzając średnią kwadratu 
składowej prędkości pojedynczej cząsteczki:
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skąd, mnoŜąc obustronnie przez V mamy:

gdzie n to liczba moli a NA to liczba Avogadry.
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Ostatecznie otrzymamy:

skąd, wprowadzając prędkość średnią 
kwadratową (jako pierwiastek ze 
średniej z kwadratu prędkości 
pojedynczej cząsteczki):
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Porównując otrzymany wynik:                                     z równaniem stanu 
gazu doskonałego: 

TRnPV ====

gdzie M to masa molowa rozwaŜanego gazu.
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otrzymamy równanie: z którego wynika, Ŝe:

gaz masa molowa [10-3kg/mol] vśr.kw.[m/s] 
wodór (H2) 2,02 1920
hel (He) 4,0 1370
para wodna (H2O) 18,0 645
azot (N2) 28,0 517
tlen (O2) 32,0 483
dwutlenek węgla (CO2) 44,0 412
dwutlenek siarki (SO2) 64,1 342

Prędkości cząsteczek wybranych gazów w temperaturze pokojowej (300 K)

Prędkość średnia kwadratowa cząsteczek gazu doskonałego
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Prędkości te przyjmują wartości z zakresu do 0 do

Rozkład Maxwella prędkości cząsteczek tlenu w temperaturze 300 K. Pole Pdv jest 
prawdopodobieństwem, Ŝe prędkość wybranej cząsteczki będzie miała wartość w 

zakresie od v do v+dv. Pole pod krzywą jest równe jedności. Pokazano trzy prędkości 
charakterystyczne, w tym vsr.kw., prędkość średnią kwadratową

∞∞∞∞++++
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Rozkład Maxwella prędkości cząsteczek gazu doskonałego



6

Rozkład Maxwella prędkości cząsteczek gazu doskonałego

© Wydawnictwo Naukowe PWN SA

Rozkład Maxwella prędkości cząsteczek tlenu dla temperatury 300 i 80 K. 
Pole pod kaŜdą krzywą jest równe jedności. 
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Z równania:

Mamy takŜe średnią energię kinetyczną ruchu postępowego pojedynczej 
cząsteczki gazu:
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W danej temperaturze T wszystkie cząsteczki gazu doskonałego, niezaleŜnie 
od swojej masy, mają taką samą średnią energię kinetyczną ruchu 
postępowego równą (3/2)kT. Mierząc temperaturę gazu moŜemy wyznaczyć 
średnią energię kinetyczną ruchu postępowego cząsteczek tego gazu

Mówiąc o ruchu postępowym cząsteczki gazu mamy na myśli 
ruch środka masy tej cząsteczki

Średnia energia kinetyczna ruchu postępowego 
cząsteczek gazu doskonałego
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Wprowadzając stałą Boltzmanna k do równania stanu gazu doskonałego 
otrzymamy:

NkTkTnNTRnPV A ============

jeszcze jedną postać równania stanu gazu doskonałego. W równaniu tym N to 
liczba cząsteczek gazu w objętości V. Z postaci tego równania wynika, Ŝe 
liczba cząsteczek dwóch róŜnych gazów, zajmujących tę samą objętość, w tej 
samej temperaturze i o tym samym ciśnieniu, będzie taka sama. 

Sprawdzian

Mieszanina gazów zawiera cząsteczki typu 1, 2 i 3, których masy 
cząsteczkowe spełniają nierówność m1 > m2 > m3. Uszereguj te cząsteczki 
według ich:
a) średniej energii kinetycznej 
b) prędkości średniej kwadratowej
W kaŜdym przypadku zacznij od wartości największej
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Energia wewnętrzna gazu doskonałego 
jedno- i dwuatomowego

Energia wewnętrzna gazu jednoatomowego (brak oddziaływań pomiędzy 
atomami gazu) wyniesie:
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gdzie N to liczba cząsteczek gazu w rozwaŜanej objętości. 

Dla większych cząsteczek, naleŜy uwzględnić energię kinetyczną związaną z 
obrotami oraz kinetyczną i potencjalną z oscylacjami.  Energia wewnętrzna 
będzie wobec tego zawierać następujące wyrazy:
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Gaz dwuatomowy moŜna rozpatrywać jako skrajny przypadek mieszaniny 
dwóch gazów jednoatomowych w stosunku 1:1, w której kaŜdy atom gazu A 
oddziałuje (połączył się w cząsteczkę) z jednym atomem gazu B. 

Pominięto wkład elektronowy, który jest na ogół znacznie mniejszy od 
pozostałych.  
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Zatem bezpośrednia wymiana energii poprzez zderzenia pomiędzy 
cząsteczkami róŜnych gazów w mieszaninie prowadzi do równości średnich 
energii kinetycznych cząsteczek obu gazów. Ciśnienia cząstkowe wywierane 
przez oba gazy będą róŜne i zaleŜne od koncentracji cząsteczek (Ni/V) obu 
gazów. 
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W mieszaninie dwóch gazów A i B, bez oddziaływań pomiędzy atomami A i 
B, ciśnienie będzie sumą ciśnień cząstkowych:









++++====++++==== 2211

2
.kw.śr,22

2

2
.kw.śr,11

1 kT
2

3
NkT

2

3
N

3

2

2

vm
N

3

2

2

vm
N

3

2
PV

Po wyrównaniu się temperatur:

.
2

vm

2

vm
      ;kT

2

3

2

vm
      ;kT

2

3

2

vm 2
.kw.śr,22

2
.kw.śr,11

2
.kw.śr,22

2
.kw.śr,11 ============

(((( )))) NkTkTNNPV 21 ====⋅⋅⋅⋅++++====

co oznacza, Ŝe:

a więc:
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ZałóŜmy, Ŝe w mieszaninie dwóch gazów jednoatomowych kaŜdy atom gazu 
A oddziałuje z jakimś atomem gazu B (są związane w dwuatomową 
cząsteczkę AB). Przy zderzeniach, które prowadzą do wymiany energii i do 
ustalenia równowagi, waŜne są tylko prędkości atomów, a nie działające 
pomiędzy nimi siły. 
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kinetyczne cząsteczek są równe: 
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rco oznacza, Ŝe: 

gdyŜ                             bo względny ruch atomów w cząsteczce jest całkowicie 
przypadkowy. 
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(3/2)kT dla ŚM cząsteczki i (3/2)kT dla kaŜdego atomu
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Z jednej strony mamy zatem: 

kT3kT
2

3
kT

2

3
E calk ,k ====++++====

kT
2

3

2

vm

2

vm 2
BB

2
AA ========

rr

co oznacza, Ŝe całkowita średnia energia kinetyczna cząsteczki

dwuatomowej jest równa: 
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z drugiej zaś wiemy, Ŝe średnia energia kinetyczna związana z ruchem

środka masy ŚM wynosi: 

Oznacza to, Ŝe brakująca energia równa             na cząsteczkę jest

średnią energią kinetyczną ruchu wewnętrznego cząsteczki dwuatomowej, 
czyli jej obrotów wokół środka masy i oscylacji.

 kT
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Średnia energia kinetyczna ruchu postępowego i wewnętrznego 
cząsteczki dwuatomowej
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Energię ruchu wewnętrznego cząsteczki 
dwuatomowej moŜna wyrazić jako energię 
ruchu obrotowego (dwie osie obrotu) i energię 
kinetyczną oscylacji wzdłuŜ wiązania 
pomiędzy atomami.

Na kaŜdy stopień swobody przypada zatem
energia:           

Pojedynczy atom nie ma energii kinetycznej 
ruchu obrotowego, a cząsteczka dwuatomowa 
nie ma trzeciej osi obrotu.  

Dla cząsteczki zbudowanej z r atomów liczba stopni swobody wynosi 3r, 
po trzy na atom. Całkowita energia kinetyczna wyniesie wobec tego 
(3/2)rkT, z tego energia kinetyczna ruchu ŚM (ruchu postępowego) to 
(3/2)kT, a energia kinetyczna przypadająca na pozostałe stopnie swobody 
(obroty i oscylacje, bez energii potencjalnej) wyniesie (3/2)(r-1)kT.   

Zasada ekwipartycji energii

zasada ekwipartycji energii

© Wydawnictwo Naukowe PWN SA
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Energia wewnętrzna gazu dwuatomowego bez oscylacji wyniesie:
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A dla większych cząsteczek, dla których liczba atomów wynosi r > 2, bez 
oscylacji (6 stopni swobody, 3 dla ŚM i 3 obroty):

Uwzględnienie oscylacji zwiększa U o (3r-6)NkT do: 

Udział lub brak udziału oscylacji w energii wewnętrznej, jest efektem 
kwantowym i zaleŜy od temperatury.
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Całkowita energia wewnętrzna gazu dwuatomowego wyniesie:

(((( ))))kT1rN3U −−−−====

Energia wewnętrzna gazu doskonałego wieloatomowego
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termometr

zbiornik

A

zbiornik

B

Doświadczenie Joule’a (1843)

Dwa zbiorniki połączone kranem, zanurzone w wodzie. 
Początkowo zbiornik A zawierał spręŜone powietrze (22 
atm), a zbiornik B był odpompowany. Po otwarciu kranu 
część powietrza przepłynęła do zbiornika B. Po ustaleniu 
równowagi termodynamicznej, termometr nie wykazał
zmiany temperatury kąpieli wodnej. 

Ciepło wydzielone podczas spręŜania gazu w zbiorniku B 
jest równe ciepłu straconemu przez gaz w zbiorniku A na 
wykonanie pracy spręŜania. Gaz jako całość nie zmienił
temperatury.

Energia wewnętrzna gazu doskonałego zaleŜy tylko od jego 
temperatury

Prawo Joule’a Thomsona

Energia wewnętrzna gazu wieloatomowego doskonałego zaleŜy tylko od 
temperatury, nie zaleŜy od ciśnienia i objętości gazu. Wniosek ten 

potwierdza tzw. doświadczenie Joule’a

325,12 K


